Difference between revisions of "Twin Tower Dryers"

From SolidsWiki
Jump to navigation Jump to search
Line 23: Line 23:


==Least Expensive==
==Least Expensive==
Heated purge Twin Tower Dryers use less air than the heatless variety  in addition to heat, which helps the air carry away more water as it  passes through the saturated desiccant.==Best Compromise==Heated blower purge regenerative desiccant air dryers use air from outside the dryer  that is heated and sent through the water-saturated desiccant for  drying.
Heated purge Twin Tower Dryers use less air than the heatless variety  in addition to heat, which helps the air carry away more water as it  passes through the saturated desiccant.==Best Compromise==Heated blower purge regenerative Twin Tower Dryers use air from outside the dryer  that is heated and sent through the water-saturated desiccant for  drying.


==Classification==
==Classification==
Line 36: Line 36:
* DBP Desiccant Regenerative Blower Purge Dryer
* DBP Desiccant Regenerative Blower Purge Dryer


==Small Heatless Desiccant Air Dryers==
==Small Heatless Twin Tower Dryers==
[[File:Hrglam02.jpg|thumb|right|100px|Small Heatless Twin Tower Dryer]]
[[File:Hrglam02.jpg|thumb|right|100px|Small Heatless Twin Tower Dryer]]
Using  Pressure Swing Adsorption (PSA) technology, the Twin Tower Engineering  regenerative air dryers are designed to maximize the efficiency of the  drying process. Ultra-Dry compressed air dew points of -40°F to better  than -100°F can be achieved.
Using  Pressure Swing Adsorption (PSA) technology, the Twin Tower Engineering  regenerative air dryers are designed to maximize the efficiency of the  drying process. Ultra-Dry compressed air dew points of -40°F to better  than -100°F can be achieved.


==Large Heatless Desiccant Air Dryers==
==Large Heatless Twin Tower Dryers==
Engineered  for long service life and superior protection of your air-operated  equipment and processes. THL series heatless regenerative desiccant  compressed air dryers deliver the peace of mind of high quality, value  and fast delivery.
Engineered  for long service life and superior protection of your air-operated  equipment and processes. THL series heatless regenerative desiccant  compressed air dryers deliver the peace of mind of high quality, value  and fast delivery.


==Compact Heatless Desiccant Air Dryers==
==Compact Heatless Twin Tower Dryers==
[[File:Vsagroup.gif|thumb|right|100px|Compact Heatless Twin Tower Dryer]]
[[File:Vsagroup.gif|thumb|right|100px|Compact Heatless Twin Tower Dryer]]
Economical  and compact, these heatless desiccant compressed air dryers provide  low  dew points to -100°F ADP(atmospheric dew point). This proven  "no-frills" design uses Pressure Swing Adsorption (PSA) technology and  will provide years of trouble-free service.
Economical  and compact, these heatless desiccant compressed air dryers provide  low  dew points to -100°F ADP(atmospheric dew point). This proven  "no-frills" design uses Pressure Swing Adsorption (PSA) technology and  will provide years of trouble-free service.


==Mini Heatless Desiccant Air Dryers==
==Mini Heatless Twin Tower Dryers==
[[File:Mdh_group_174h.jpg|thumb|right|100px|Mini Heatless Twin Tower Dryer]]
[[File:Mdh_group_174h.jpg|thumb|right|100px|Mini Heatless Twin Tower Dryer]]
Ultra-small  desiccant compressed air dryers can be used for low-flow applications  or with fractional horsepower air compressors. These units are heatless  regenerative desiccant air dryers designed to produce low dew points.  Extremely small footprint allows for packaging inside equipment  cabinets  or at point-of-use.
Ultra-small  desiccant compressed air dryers can be used for low-flow applications  or with fractional horsepower air compressors. These units are heatless  regenerative Twin Tower Dryers designed to produce low dew points.  Extremely small footprint allows for packaging inside equipment  cabinets  or at point-of-use.


==DMD Desiccant Modular Dryer==
==DMD Desiccant Modular Dryer==

Revision as of 00:47, 25 July 2012


The Twin Tower Dryers are used for drying air in storage tanks or pneumatic systems and are beneficial in the drying of hygroscopic (water-absorbing) resins. These dryers remove water from the air by passing it through a desiccant that absorbs moisture.

Features

The Twin Tower Dryers consist mainly of two cylinders containing desiccant, connected by a valve system.

Operation

When the desiccant in the first cylinder is saturated, the air flow can be switched to the cylinder containing the dried desiccant.

Dessicant Types

Common desiccants are silica gel (an oxide of silica), alumina (aluminum oxide) and calcium sulfate (the anhydrous form of gypsum).

Types of Dryers

While manual desiccant dryers exist, many dryers are Twin Tower Dryers, as noted in the Plant Services magazine article, "The Economics of Operating Twin Tower Dryers," by Noel Corral and Andrew Sheaffer.

Most Expensive

Heatless Twin Tower Dryers run a portion of dried compressed air through the previously utilized cylinder to extract moisture from its desiccant.

Least Expensive

Heated purge Twin Tower Dryers use less air than the heatless variety in addition to heat, which helps the air carry away more water as it passes through the saturated desiccant.==Best Compromise==Heated blower purge regenerative Twin Tower Dryers use air from outside the dryer that is heated and sent through the water-saturated desiccant for drying.

Classification

There are different types of Twin Tower Dryers. These are:

  • Small Heatless Twin Tower Dryer
  • Large Heatless Twin Tower Dryer
  • Compact Heatless Twin Tower Dryer
  • Mini Heatless Twin Tower Dryer
  • DMD Desiccant Modular Dryer
  • DHL Desiccant Heatless Dryer
  • DEX Desiccant Externally Heated Dryer
  • DBP Desiccant Regenerative Blower Purge Dryer

Small Heatless Twin Tower Dryers

File:Hrglam02.jpg
Small Heatless Twin Tower Dryer

Using Pressure Swing Adsorption (PSA) technology, the Twin Tower Engineering regenerative air dryers are designed to maximize the efficiency of the drying process. Ultra-Dry compressed air dew points of -40°F to better than -100°F can be achieved.

Large Heatless Twin Tower Dryers

Engineered for long service life and superior protection of your air-operated equipment and processes. THL series heatless regenerative desiccant compressed air dryers deliver the peace of mind of high quality, value and fast delivery.

Compact Heatless Twin Tower Dryers

File:Vsagroup.gif
Compact Heatless Twin Tower Dryer

Economical and compact, these heatless desiccant compressed air dryers provide low dew points to -100°F ADP(atmospheric dew point). This proven "no-frills" design uses Pressure Swing Adsorption (PSA) technology and will provide years of trouble-free service.

Mini Heatless Twin Tower Dryers

File:Mdh group 174h.jpg
Mini Heatless Twin Tower Dryer

Ultra-small desiccant compressed air dryers can be used for low-flow applications or with fractional horsepower air compressors. These units are heatless regenerative Twin Tower Dryers designed to produce low dew points. Extremely small footprint allows for packaging inside equipment cabinets or at point-of-use.

DMD Desiccant Modular Dryer

File:PIC DMD30 lrg.jpg
DMD Twin Tower Dryer

The Sullair DMD series is a lightweight modular desiccant dryer that offers unsurpassed installation flexibility. This lightweight modular dryer design brings a whole new concept in compressed air technology offering total installation flexibility to meet your specific needs. A small amount of the dried compressed air is used to regenerate the saturated desiccant bed by expanding air from line pressure to atmospheric pressure, removing the moisture absorbed by the desiccant material. Protection is built-in. Extruded aluminum housings that surround the dryers are fully protected from corrosion.

DHL Desiccant Heatless Dryer

File:PIC DHL600 lrg.jpg
DHL Twin Tower Dryer

The dual tower design of the DHL series dryers allows for continuous absorption of water from compressed air by using a desiccant bed. Drying is accomplished by passing wet compressed air through the desiccant bed of one tower where moisture is absorbed. Regeneration of the desiccant is accomplished without the use of heat. The wet bed is dried by diverting a small amount of dry air from the outlet at near atmospheric pressure. The purge flow rate is adjustable to suit the desired dew point. The dry air flows in a counter direction through the wet bed, sweeping all the water vapor previously absorbed by the desiccant.

DEX Desiccant Externally Heated Dryer

File:PIC DEX400 lrg.jpg
DEX Twin Tower Dryer

The dual tower design of the DEX dryers allows for continuous absorption of water from compressed air by using a desiccant. Drying is accomplished by passing wet compressed air through the desiccant bed of one of the towers where moisture is absorbed. Regeneration of the desiccant is accomplished with the use of a low watt density heater. The heated air has a greater affinity to absorb moisture. When passed through the regenerating tower at near ambient pressure, the heated air flows in a counter direction through the wet bed, removing moisture previously absorbed by the desiccant.

DBP Desiccant Regenerative Blower Purge Dryer

File:PIC DBP1000 lrg.jpg
DBP Desiccant Regenerative Blower Purge Dryer

The dual tower design of the DBP, blower purge dryer, allows for continuous absorption of water from compressed air by using a desiccant. Drying is accomplished by passing wet compressed air through the desiccant bed of one of the towers where moisture is absorbed. Regeneration of the desiccant is accomplished using a blower to pass ambient air through a low watt density heater because heated air has a greater affinity to absorb moisture. When passed through the regenerating tower at near ambient pressure, the heated air flows through the wet bed, removing water vapor previously absorbed by the desiccant.